Abstract

Medium-chain fatty acids (MCFAs) comprise saturated fatty acids with 6–10 carbons. Besides synthetic medium-chain triglyceride (MCT) oils there are natural sources, like coconut oil and dairy fat. Compared with long-chain fatty acids (LCFAs), the chemical and physical properties of MCFAs show substantial metabolic differences. MCFAs do not require binding to proteins such as fatty-acid binding protein, fatty acid transport protein, and/or fatty acid translocase (FAT, homolog to human platelet CD36). MCFAs are a preferred source of energy (β-oxidation). MCFAs are also incorporated into adipose tissue triglycerides, and may influence adipose tissue and other systemic functions more substantially than previously assumed. MCTs reduce fat mass, through down-regulation of adipogenic genes as well as peroxisome proliferator activated receptor-γ. Recent studies confirmed the potential of MCFAs to reduce body weight and particularly body fat. This effect was not transient. MCFAs reduce lipoprotein secretion and attenuate postprandial triglyceride response. It was, however, frequently observed that MCTs increase fasting cholesterol and triglyceride levels. But, given in moderate amounts, in diets with moderate fat supply, MCFAs may actually reduce fasting lipid levels more than oils rich in mono- or polyunsaturated fatty acids. The same is true for glucose levels. MCTs improved several features contributing to enhanced insulin sensitivity. Under certain in vitro conditions, MCTs exert proinflammatory effects, but in vivo MCTs may reduce intestinal injury and protect from hepatotoxicity.

Keywords: Medium-chain fatty acids; Metabolism; Health

Contents

1. Introduction ... 1375
2. Natural occurrence of medium-chain fatty acids and chemical synthesis of MCT oil .. 1375
3. Intestinal absorption ... 1375
4. Cellular handling of MCFAs in liver and other organs ... 1375
5. Extrahepatic storage of MCFAs ... 1376
6. Implications of MCTs for health .. 1376
 6.1. Fasting plasma lipids .. 1376
 6.2. Postprandial plasma lipids .. 1377
 6.3. Body weight .. 1377
 6.4. Effect on glucose metabolism and insulin resistance 1378
 6.5. Inflammation .. 1378
7. Side effects of MCT consumption .. 1379
8. Conclusions and perspectives ... 1379
9. References .. 1379

*Corresponding author. Tel.: +49 431 609 2234; fax: +49 431 609 2472.
E-mail address: maria.pfeuffer@bfel.de (M. Pfeuffer).

0958-6946/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.idairyj.2006.06.015
1. Introduction

The term medium-chain triacylglycerols refers to mixed triacylglycerols of saturated fatty acids with a chain length of 6–10 carbons, i.e., hexanoic acid (C6:0, common name capric acid), octanoic acid (C8:0, common name caprylic acid), and decanoic acid (C10:0, common name capric acid). Sometimes, dodecanoic acid (C12:0, common name lauric acid) is included. In the 1950s, medium-chain triglycerides (MCTs) were introduced as a special energy source within a variety of clinical nutrition settings, including pancreatic insufficiency, fat malabsorption, impaired lymphatic chylomicron transport, severe hypercholesterolemia, and total parenteral nutrition. MCTs are also being used in preterm infant formulas. Since 1994, the use of MCTs in food products is generally recognized as safe (GRAS status) the US Food and Drug Administration (Traul, Driedger, Ingle, & Nakhasi, 2000).

2. Natural occurrence of medium-chain fatty acids and chemical synthesis of MCT oil

Dietary fats contain largely fatty acids with a chain length of 14 carbons and more. However, there are some natural sources of Medium-chain fatty acids (MCFAs). In coconut and palm kernel oil, there are high amounts of MCFAs (>50 wt% of fatty acids). In bovine milk C6:0–C10:0 make up 4–12% of all fatty acids, and C12:0 make up 2–5%, varying with genetics, stage of lactation, and feeding regimens (Jensen, 2002). MCT oils are produced by hydrolysis of coconut or palm kernel oil, filtration of MCFAs, and subsequent re-esterification. These MCT oils contain almost exclusively octanoic and decanoic acid, at a ratio from 50:50 to 80:20 (Bach & Babayan, 1982). Compared with triglycerides containing mainly saturated long-chain fatty acids, MCTs have a lower melting point, smaller molecule size, are liquid at room temperature, and less energy dense (8.4 versus 9.2 kcal g⁻¹). These distinct chemical and physical properties affect the way MCFAs are absorbed and metabolized.

There is an enormous number of studies dealing with the role of MCFAs as well as a number of reviews in this field (Bach & Babayan, 1982; Pfeuffer & Schrezenmeir, 2002; St Onge, 2005; St Onge & Jones, 2002). Most attention has focused on the potential role of MCFAs for weight management. The present paper addresses several aspects of MCFA metabolism that affect features of the metabolic syndrome; these include plasma lipid levels, insulin resistance, inflammatory response, as well as weight management.

3. Intestinal absorption

Intraluminal hydrolysis of MCTs is faster and more efficient than hydrolysis of long-chain triglycerides (LCTs). Likewise, absorption of MCFAs is faster and more efficient than that of long-chain fatty acids (LCFAs). MCFAs stimulate cholecystokinin secretion, bile phospholipid and cholesterol secretion less than LCFAs. In the presence of pancreatic lipase or bile salt deficiency, MCFAs can still be absorbed, as opposed to LCFAs (Bach & Babayan, 1982). In patients with pancreatic insufficiency, steatorrhea was significantly lower during a 5-day intake of a diet supplemented with MCT oil compared with a diet supplemented with LCTs (butter fat) (Caliari et al., 1996).

The majority of absorbed MCFAs are transported in the portal vein to the liver, whereas LCFAs are incorporated into chylomicron triglycerides and reach the systemic circulation via the lymph system (Bach & Babayan, 1982). The proportion of MCFAs in chylomicrons increases with increasing chain length and with chronic administration. Simultaneous administration of MCTs and LCTs increases MCFA appearance in chylomicrons (Lee, Hashim, & Vanitall, 1968).

4. Cellular handling of MCFAs in liver and other organs

In hepatocytes as well as in other cells, esterification of MCFAs is limited (Papamandjaris, MacDougall, & Jones, 1998). Thus, MCFAs have a high propensity for oxidation and seem to behave more like glucose than fat (Babayan, 1987). In contrast to LCFAs, MCFAs do not require carnitine palmitoyl transferase (CPT) for intramitochondrial transport. MCFAs readily cross the mitochondrial membrane, are activated intramitochondrially by medium-chain acyl CoA synthases (Ikeda, Okamuraikeda, & Tanaka, 1985), and are rapidly oxidized. Consequently, oxidation of MCFAs is higher than that of LCFAs, both in rodents (Crozier, 1988; Noguchi, Takeuchi, Kubota, Tsuji, & Aoyama, 2002) and humans (Metges & Wolfram, 1991; St Onge, Bourque, Jones, Ross, & Parsons, 2003). In order to oxidize fatty acids, sufficient oxaloacetate is required to channel an elevated influx of acetyl CoA into the tricarboxylic acid cycle. An excessive supply of acetyl CoA results in increased ketone body production, as happens from MCFAs as compared to LCFAs (Seaton, Welle, Warenko, & Campbell, 1986; Tsuji et al., 2001). In parallel with increased MCFA oxidation, increased hepatic lipogenesis due to increased de novo fatty acid synthesis and enhanced fatty acid elongation was observed after the consumption of high MCT diets (>38%, w/w; Carnielli et al., 1994; Crozier, 1988; Hill et al., 1990). Increased cytosolic concentration of malonyl CoA down regulates the activity of CPT1 and thus results in reduced intramitochondrial transport and oxidation of LCFAs, while MCFAs bypass this transport process.

Compared with LCFAs, MCFAs do not require binding to fatty acid-binding protein, fatty acid transport proteins, or fatty acid translocase (FAT). This affects a number of regulatory pathways. For example, in the spontaneously hypertensive rat (SHR), where FAT on rat chromosome 4 was identified as a defective SHR gene (Aitman et al., 1997, 1999), dietary supply of MCFAs resulted in reduced basal insulin levels, normalized glucose tolerance, and attenuated
symptoms of the metabolic syndrome (Hajri et al., 2001). Furthermore, MCFA intake improved the impaired capacity of the SHR heart to withstand acute adrenergic stress due to the contribution of exogenous MCFAs oxidation to energy production (Labarthe, Khairallah, Bouchard, Stanley, & Des, 2005). Besides peroxisome proliferator activated receptor-γ (PPARγ) gene expression and protein concentrations of further adipogenic transcription factors, steroid regulatory-binding element protein-1c and CCAAT element-binding protein-α were increased in murine adipocytes after exposure to octanoate (Han et al., 2002), indicating regulatory effects of MCFAs on transcriptional and post-transcriptional level.

5. Extrahepatic storage of MCFAs

The minor fraction of MCFAs which bypasses the liver is distributed to peripheral tissue via the general circulation (Bach & Babayan, 1982; Greenberger & Skillman, 1969). Although it is generally believed that ingested MCFAs are preferably oxidized in the liver, MCFAs were also incorporated into adipose tissue triglycerides of rodents (Han, Hamilton, Kirkland, Corkey, & Guo, 2003), and may influence adipose tissue and consequently systemic function more substantially than previously assumed. Murine 3T3-L1 preadipocytes exposed to octanoic acid accumulated less fat and did not induce cell differentiation compared to oleic acid (Guo, Choi, Kirkland, Corkey, & Guo, 2003). When 3T3-L1 and human adipocytes were exposed to octanoic acid, they accumulated less fat and show attenuated adipogenesis than cells exposed to LCFAs (Guo, Lei, Wang, Corkey & Han, 2003; Han et al., 2002). Furthermore, compared with an LCT diet, 2-months’ feeding of an MCT diet reduced fat mass in rats, apparently through the down-regulation of adipogenic genes as well as the transcription factor PPARγ, beyond improving insulin sensitivity and glucose tolerance (Han et al., 2003). The decreased fat accumulation in adipocytes could result from preferential lipolysis of MCFAs stored at position sn-1,3 of adipose tissue triacylglycerols (Guo et al., 2000). Because MCFAs are highly ionized at physiological pH, they are much more soluble in aqueous biological fluids compared with LCFAs (Odle, 1997) and could move away faster from lipid droplets to reduce product inhibition of hormone sensitive lipase (Lei et al., 2004).

6. Implications of MCTs for health

6.1. Fasting plasma lipids

Serum lipids are secreted into the circulation from the intestine as chylomicrons and from the liver as very low-density lipoprotein (VLDL). Both lipoproteins carry one molecule of either apolipoprotein (apo) B48 or B100. Long-chain saturated fatty acids as well as oleic acid generally stimulate secretion and at the same time increase intracellular triglycerides. But octanoic (Sato et al., 2005; Tachibana, Sato, Takahashi, & Akiba, 2002), decanoic and dodecanoic acid (Sato et al., 2005) stimulated apoB, triglyceride and cholesterol secretions less than palmitic acid (C16:0) in cultured hepatocytes. At the same time, intracellular apoB mRNA expression was reduced with decanoic and dodecanoic acid, and there was no intracellular triglyceride accumulation. MCFAs even attenuated palmitic acid-stimulated apoB secretion (Sato et al., 2005; Tachibana et al., 2002). ApoB secretion, as well as hepatic triglyceride and cholesterol concentration, was also lower with octanoic as compared with oleic (C18:1) or linoleic acid (C18:2) when these fatty acids were fed as synthetic triglycerides to mice (Xie, Woollett, Turley, & Dietschy, 2002).

Nevertheless, studies frequently found that MCTs, as compared with LCTs, containing diets increased fasting plasma cholesterol as well as triglyceride concentrations in humans. LCTs in these studies were mostly from soybean, corn, or olive oil (Cater, Heller, & Denke, 1997; Hill et al., 1989, 1990; Swift, Hill, Peters, & Greene, 1992; Tholstrup et al., 2004). The problem is that polyunsaturated LCFAs themselves are hypocholesterolemic and hypotriglyceridemic compared to saturated LFCAs (Mensink, Zock, Kester, & Katan, 2003). When an MCT-rich diet was compared with a dodecanoic acid-rich diet, with identical amounts of mono- and polyunsaturated fatty acids, total and LDL cholesterol was less increased by the MCT diet. The MCT- as compared with the dodecanoic acid-rich diet also increased LDL receptor activity significantly (Tsai, Park, Kovacic, & Snook, 1999). However, diets with synthetic triglycerides containing only hexanoic or octanoic acid did not change LDL receptor activity as compared with tristearates in animal experiments (Dietschy, Woollett, & Spady, 1993).

All these experiments were carried out with very high amounts of MCTs in the diet, and in some cases the supply of polyunsaturated fatty acids in these diets was critically low. Two studies chose a different approach and used lower amounts of MCTs. In one case, just 5 g MCTs were given in a standard diet (28% of energy as fat, 2200 kcal per day in total), against an LCT diet enriched in mono- and polyunsaturated fatty acids (Nosaka et al., 2003). During the 12-week intervention, cholesterol and triglyceride levels were gradually reduced in both experimental groups, but somewhat more in the MCT group. VLDL cholesterol was significantly more reduced with the MCT diet. In another study, 10 g MCTs or a non-specified LCT oil was given in a very-low-calorie diet (VLCD) for 4 weeks (Krotkiewski, 2001). Again, both test oils decreased total cholesterol and triglyceride levels significantly, and the effect was more pronounced with MCTs. It is not clear whether the difference between the groups was tested for significance.

As will be discussed later for the effect on weight loss, consuming a moderate amount may be critical for a hypocholesterolemic (and hypotriglyceridemic) effect to be
seen. Though MCFAs do reduce triglyceride secretion when used in lower amounts, MCFA consumption, especially when fed in excess of caloric needs, might increase de novo lipogenesis. This, in turn, would increase triglyceride secretion, and could thus account for the elevated fasting plasma triglyceride levels (Pfeuffer & Schrezenmeir, 2002). As cholesterol and triglyceride secretion are regulated in a coordinated manner, increased cholesterol secretion may be the consequence of increased triglyceride secretion and this, in the longer run, might also enhance plasma cholesterol levels.

6.2. Postprandial plasma lipids

As outlined before, the inhibitory effect of MCFAs on apoB and triglyceride secretion will acutely affect the postprandial triglyceride response. Plasma triglyceride levels increase after a fat-containing meal and return to baseline 6–12 h later. The degree of postprandial triglyceride response to a fat meal is positively correlated with cardiovascular disease risk and features of the metabolic syndrome (Karpe, 1999; Schrezenmeir et al., 1993). According to conventional wisdom this postprandial triglyceride response, usually expressed as area under the curve (AUC), is more pronounced with saturated rather than polyunsaturated fatty acids. Postprandial triglyceride response was generally lower with intake of MCFAs rather than mono- or polyunsaturated LCFAs, both in animals (Kalogeris, Monroe, Demichele, & Tso, 1996) and man (Asakura et al., 2000; Borel et al., 1998). This diminished postprandial triglyceride response is not simply explained by the fact that MCFAs are transported in the lymph. When an MCT meal was followed by a subsequent LCT meal, the postprandial response to the second meal was unexpectedly pronounced, and the total AUC war approximately equivalent to that of two consecutive LCT meals (Borel et al., 1998). The authors concluded that a fraction of the MCFAs had been stored temporarily in the mucosa and secreted after the second meal, and that LCFAs are absolutely required for chylomicron formation. It may, however, be questioned whether lack of LCFAs is a sufficient explanation, as chylomicron triglycerides are generally enriched in endogenous LCFAs (Lambert, Botham, & Mayes, 1995).

Not surprising, obese subjects benefited more from the attenuating effect of MCFAs than lean subjects, and postprandial cholesterol response was also reduced (Kasai, Maki et al., 2003). The difference was mainly in what the authors called low-density lipoprotein (LDL), but what is probably an atherogenic remnant fraction. The lipid load was small in this study, just 10 g of soybean plus rapeseed oil or pure MCTs in a mixed liquid meal. The postprandial triglyceride response to milk fat as compared with an oil rich in polyunsaturated fatty acids was equal or even less in several studies (Mekki et al., 2002). This attenuated response is most probably due to short-chain fatty acids and MCFAs in dairy fat. In one study, the response to an MCT-enriched meal was not different from that to a cream meal (Thomas et al., 2001).

6.3. Body weight

In animals, feeding MCTs results in less weight gain than feeding isoenergetic diets containing LCTs, and less weight gain was associated with decreased fat deposition (Baba, Bracco & Hashim, 1982; Crozier, Boisjoly, Chanez, Girard, & Peret, 1987; Geliebter, Torbay, Bracco, Hashim, & Vanitallie, 1983; St Onge, Ross, Parsons, & Jones, 2003). It is generally believed that MCT-induced weight loss is secondary to hepatic oxidation of MCFAs, which lead to increased energy expenditure. Isoenergetic feeding of MCTs increases thermogenesis to a greater extent than LCTs in rodents (Bach & Babayan, 1982; Dulloo, Mensi, Seydoux, & Girardier, 1995; Geliebter et al., 1983; Noguchi et al., 2002). However, humans on a long-term basis could not consume such high-MCT diets, due to lack of palatability and because of adverse gastrointestinal and other symptoms. Energy expenditure following MCT-based meals was also greater than for LCT-based meals in several studies on humans, within 6 h after a single meal (Kasai et al., 2002; St Onge, Ross et al., 2003) or over 24 h (Dulloo, Fathi, Mensi & Girardier, 1996), and this effect was dose dependent (Dulloo et al., 1996). Higher thermogenesis was still evident after 6 days of overfeeding a liquid formula diet containing MCTs (Hill et al., 1989), but was somewhat attenuated after 4 weeks on an MCT as compared with a control olive oil diet (St Onge, Ross et al., 2003). But when MCTs were compared to beef tallow, an increased energy expenditure was still evident after 4 weeks (St Onge, Bourque et al., 2003).

The question arises how do MCTs affect body weight and body composition in the longer term. Intervention studies were carried out mostly in obese subjects, with an energy supply covering energy needs. In two intervention studies on obese subjects, lasting 4 weeks, there was a high fat (40% of energy) and MCT supply (approximately 80 g per day) (St Onge, Bourque et al., 2003; St Onge, Ross et al., 2003). In one experiment, MCTs were compared against beef tallow (St Onge, Bourque et al., 2003); in the other, a so-called functional MCT oil also containing flaxseed oil and phytosterols was compared against olive oil (St Onge, Ross et al., 2003). In both studies, weight loss was not different between intervention groups. However in the latter study, body fat was significantly more reduced with MCT intervention (St Onge, Ross et al., 2003). In a series of intervention studies from Japan in obese subjects (body mass index (BMI) >23 kg m⁻²), lasting 12 weeks each, dietary fat provided 26–27% of energy and the MCT dose was moderate, either 10 g per day during breakfast (Tsujii et al., 2001), 5 g per day in margarine (Nosaka et al., 2003), or 1.7 g per day in bread (Kasai, Nosaka et al., 2003), against a mixture of rapeseed and soybean oil as control. In all studies, body weight as well as body fat was significantly more reduced with the MCT diet. There was
no indication of an attenuated effect with longer time. The effects were not significant in non-obese subjects, i.e., subjects with BMI $< 23 \text{kg} \cdot \text{m}^{-2}$ (Tsuji et al., 2001). When MCT- or LCT-containing VLCDs were given to obese subjects, with 9.9 or 8.8 g per day test fats, equivalent to 25% of total energy, MCT oil decreased body weight more than LCT oil within the first 2 weeks only. However, throughout the 4-week intervention period, MCT administration reduced body fat significantly more and lean body mass less (Krotkiewski, 2001). Thus, these results do not suggest that the effect of MCTs on body weight and body composition would be lost with longer-term application. It is noteworthy that such small amounts of MCTs per day had such a clear effect. It will have to be found out in further studies whether a low amount of MCTs, the ratio of MCFAs to other fatty acids, the total fat supply, or the food matrix into which MCTs are incorporated is critical. Furthermore, such regimens need to be tested in subjects of different genetic background.

Besides increased resting metabolic rate (White, Papanmandjaris, & Jones, 1999) and postprandial energy expenditure, there is some evidence that MCTs could reduce food intake and enhance satiety and thus alter energy intake in rats (Bray, Lee, & Bray, 1980) and humans (Krotkiewski, 2001; Stubbs & Harbron, 1996). Reduced spontaneous food and thus energy intake at lunch was observed following a high-carbohydrate breakfast supplemented with MCTs as compared to olive oil or lard (Van Wymelbeke, Louis-Sylvestre, & Fantino, 2001); however, energy intake at dinner was no longer different. Of note, resting glucose and lipid oxidation and postprandial lipid oxidation was also higher in butter-fed as compared to soybean oil-fed obese rats, and the butter diet seemed to prevent fat accumulation in the long-term. There was no clear beneficial effect of butter in lean animals (Rolland et al., 2002).

6.4. Effect on glucose metabolism and insulin resistance

Because diets high in long-chain saturated fat are linked to the pathogenesis of insulin resistance (Riccardi, Giacco, & Rivellese, 2004), it is worthwhile to examine if MCFAs improve insulin-mediated glucose metabolism. Octanoic acid stimulated glucose-mediated insulin secretion in the perfused pancreas less than longer-chain fatty acids (Stein et al., 1990). Oxidation rates of LCFAs are also usually depressed when the diet is simultaneously high in carbohydrates. But in an euglycemic clamp study, a high glucose supply decreased oleic but not octanoic acid oxidation (Sidossis, Stuart, Shulman, Lopaschuk, & Wolfe, 1996). This means that glucose controls entry of LCFAs, but not of MCFAs, into mitochondria. On the other hand, MCT/LCT infusion decreased glucose oxidation less than LCT infusion (Stouthard, Endert, Romijn, & Sauerwein, 1994).

But in most animal or human studies there was no clear-cut reduction in plasma glucose or insulin levels (reviewed by Pfeuffer & Schrezenmeir, 2002). In a recent study, when a high dose of 70 g of test fats was consumed for 3 weeks, MCTs as compared with high-oleic sunflower oil increased not only LDL cholesterol, VLDL cholesterol, and plasma triglycerides, but also fasting glucose levels (Tholstrup et al., 2004). Yet in subjects of normal weight the amount of 5 g day$^{-1}$ MCTs had no effect as compared with the LCT oil (Nosaka et al., 2003). A moderate supply of MCTs (10 g per day), in a VLCD over 4 weeks, gradually decreased fasting glucose and particularly insulin levels more than an LCT diet in obese subjects (Krotkiewski, 2001). Fasting glucose and insulin fasting levels were not changed in patients with type 2 diabetes after 30 days on a MCT-rich diet, but postprandial glucose excursion was less after MCT intervention (Yost et al., 1994). Euglycemic clamping studies in humans showed improved insulin sensitivity with an MCT diet after short-term (Eckel et al., 1992) and longer-term treatment (Yost & Eckel, 1989), in the latter case within a hypocaloric diet. Insulin sensitivity and glucose tolerance were also improved in rats fed MCTs compared with LCTs for 2 months (Han et al., 2003).

Of note, overfeeding with MCTs as compared with LCTs decreased postprandial free fatty acids (FFAs) (Hill et al., 1990). This is noteworthy as increased levels of FFAs are associated with insulin resistance and the metabolic syndrome. In addition, MCT feeding did not stimulate triglyceride accumulation in hepatocytes in cell culture (Tachibana et al., 2002; Sato et al., 2005) and in liver of animal models (Han et al., 2003; Nagata, Kasai, Watanabe, Ikeda, & Saito, 2003).

6.5. Inflammation

It is believed that atherosclerosis is caused by a chronic low-grade inflammatory state, and coronary heart disease risk is associated with increased levels of markers of inflammation, like interleukin-6, C-reactive protein and soluble adhesion molecules. High levels of some markers are also linked to features of the metabolic syndrome, including adiposity and insulin resistance. Long-chain saturated fatty acids are proinflammatory, while n-3 fatty acids from fish oils dampen inflammatory responses (Plat & Mensink, 2005). In vitro, MCT emulsions increase adhesion molecule and activation marker expression in neutrophils and monocytes (Wanten, Janssen, & Naber, 2002), alter protein kinase C-mediated calcium signalling in human neutrophils (Wanten, van Emst-De Vries, Naber, & Willems, 2001), and exert a number of changes associated with an increased inflammatory response (Bellinati-Pires, Waitzberg, Salgado, & Carneiro-Sampaio, 1993). However, where examined, the effect was not observed with MCFAs (Wanten et al., 2002) or structured triglycerides containing both MCFAs and LCFAs (Wanten et al., 2001). The clinical relevance of these findings remains to be established. Most absorbed MCFAs are transported in
consumption (Traul et al., 2000). Furthermore, rats ketonemia with MCTs at levels associated with normal abdominal cramps, and osmotic diarrhea (Jeukendrup & nausea, vomiting, bloating, gastrointestinal discomfort, meal is limited to 25–30 g. Ingestion of larger amounts of 7. Side effects of MCT consumption

In a number of studies, but not always, beneficial effects of MCTs on weight control and glucose as well as on lipid metabolism were observed. This may prove the usefulness of natural foods containing relatively high amounts of MCFAs as well as the usefulness of functional foods supplemented with MCTs. A functional oil containing MCFAs and serum fatty acid profiles in preterm infants (Rodriguez et al., 2003) and rats (Niagata et al., 2003) suggest.

Subjects with existing obesity may particularly profit from the consumption of MCFAs. β-oxidation of LCFAs was impaired in obese as compared to normal-weight subjects, but this was not the case for the oxidation of MCFAs (Binnert et al., 1998). A butter diet seemed to prevent fat accumulation in obese rats (Rolland et al., 2002), and obese human subjects lost more weight on an MCT diet than normal-weight subjects (Tsujii et al., 2001). Obese subjects profited more from the attenuating effect of MCTs on the postprandial triglyceride response (Kasai, Maki et al., 2003).

References

Metabolic effects of medium-chain triglyceride substitution. *American

Eckel, R. H. (1994). Dietary substitution of medium-chain triglycerides
in subjects with non-insulin-dependent diabetes-mellitus in an ambu-
latory setting—Impact on glycemic control and insulin-mediated

glucose-metabolism. *Journal of the American College of Nutrition, 13*,
615–622.

Zapolska-Downar, D., Siennicka, A., Kaczmarczyk, M., Kolodziej, B., &
and ICAM-1 expression in cultured endothelial cells: the role of NF-
kappaB and PPARalpha. *Journal of Nutritional Biochemistry, 15*,
220–228.